
- 24 -

(Marti83) Robert W. Marti. Integrating Datbase and Program Descriptions Using an ER -
Data Dictionary from Entity - Relationship Approach to Software Engineering, C.G. Davis
Ed., Elsevier Science Publishers, 1983, pp. 377-391.

(Miller88) Glenn Miller, Mark Johnston, Shon Vick, Jeff Sponsler, and Kelly Lindenmay-
er. Knowledge Based Tools For Hubble Space Telescope Planning and Scheduling.
Telematics and Informatics, Vol. 5 No. 3, 1988, pp. 197 - 212, Pergammon Press.

(Narayan88) Rom Narayan. Data Dictionary Implementation, Use and Maintenance. Pren-
tice Hall, 1988, pp. 77 - 81.

(Partridge86) D. Partridge. Engineering Artificial Intelligence Software. Artificial Intelli-
gence Review, Vol. 1, No. 1, 1986, pp. 27-41.

(Sheil83) Beau Sheil. Power Tools for Programmers from Readings in Artificial Intelli-
gence and Software Engineering, Charles Rich and Richard C. Waters Eds., Morgan Kauf-
man 1986

(Steele84) Guy L. Steele. Common Lisp The Language. Digital Press, 1984

- 23 -

(Bershad88) Brian N, Bershad. A Remote Computation Facility for a Heterogeneous Envi-
ronment. IEEE Computer, May 1988, pp 50-60.

(Bucher75) Bucher. Maintenance of the Computer Sciences Teleprocessing system, from
Proceedings of the International Confernce on Reliable Software, 1975.

(Cichinski88) Steve Cichinski and Glenn S. Fowler. Product Administration Through SA-
BLE and NMAKE. AT&T Technical Journal, July/August 1988, pp 59-70.

(Dhar88) Vasant Dhar and Matthias Jarke. Dependency Directed Reasoning and Learning
in Systems Maintenance support. IEEE Transactions on Software Engineering, Vol. 14,
No. 2 , Feb. 1988, pp 211-227.

(DeMichiel89) Linda G. DeMichiel. Overview: The Common Lisp Object System. Lisp
and Symbolic Computation, 1, pp 227-244, Kluwer Academic.

(Erman88) L.D. Erman, J.S. Lark, and F. Hayes-Roth. ABE: An Environment for Engi-
neering Intelligent Systems, IEEE Transactions on Software Engineering, Vol. 14, No. 12
, Dec. 1988, pp 1758-1770.

(Fairley85) Richard E. Fairley, Software Engineering Concepts, McGraw Hill, 1985, pp.
284 - 285.

(Feldman83) S.I. Feldman. Make - A Program for Maintaining Computer Programs from
the Unix Programmers Manual, 7th Ed. , Bell Tech. Labs. , pp. 291 - 300.

(Freedman85) Roy S. Freedman. Programming with APSE Software Tools. Petrocelli
Books, Princeton, New Jersey, 1985.

(Godfrey85) M.D. Godfrey, D.F. Hendry, H.J Hermans and R.K. Hessenberg. Machine- In-
dependent Organic Software Tools (MINT). Academic Press, 1985.

(Hatton88) Les Hatton, Andy Wright, Sturat Smith, Greg Parkes, Paddy Bennett and Rob-
ert Laws. The Seismic Kernel System - A Large Scale Exercise in Fortran 77 Portability.
Software Practice and Experience, Vol. 18 (4), (April 1988)pp 301-329 .

(Keene89) Sonya E. Keene. Object Oriented Programming in Common Lisp, Addison
Wesley, 1988.

(Kruse87) Robert L. Kruse, Data Structures and Program Design, Prentice Hall, 1985, pp
407 - 411.

- 22 -

(SHOW-MARIAN-HISTORY (&key verbose (sort-by :time))

10. Future Extensions to the Tool Set

Planned extensions to this tool set include the integration of an intelligent data dictionary.
with the librarian facility. (Narayan88) The data dictionary would be based on the notion
of software objects that are tied together with an Entity Relation Model (Marti83) and im-
plemented as a semantic net similar in construction to REMAP (Dhar88), So for example
when a user uses Marian to checkin a source file (a software object) the file would be
scanned for function, special variable and defclass definitions. These objects would be
linked in the model to the source file by a :is-contained-in link. The system could follow
the the :is-tested-by links constructed by the LTM to decide what tests should be run to
assure the system correctness.

As a further example the :is-called-by and :is-contained-links links could be analyzed to di-
agnose possible problems with the system definitions important to the system builder. This
last example is similar to the tool set integration between SABLE and NMAKE.
(Cichinski88).

Further source files are checked in the comments and documentation strings for software
objects like functions,methods, etc could be put through a hypertext type of authoring
mechanism. This would allow intelligent perusal of software and perhaps promote software
reusability.

11. Conclusion

This paper has discussed a set of tools and techniques used in the development of Common
Lisp software in a heterogeneous machine environment. The test manager, system builder,
code transfer and archival mechanism as well as a librarian facility have been ported to a
number of machines and implementations. These tools are implemented in only Common
Lisp and the Common Lisp Object System (CLOS). The methodology of utilizing a ma-
chine independent file path construct was also described. The tools described here have
ported with relative ease (less than one days work) to a number of different machines. Port-
ing becomes a matter of assuring that a very small core of functions that define operations
on the machine independent path abstract data type work. We are now directing our efforts
towards expanding the tool set with the creation of intelligent dependency analysis opera-
tions as described in the further extensions section.

12. References

- 21 -

Here is the definition of several of the cataloged functions above with a brief explanation
of their functioning:

(CHECKOUT (name &key comment
 (from (marian-lib))
 (type *lisp-file-type*)
 (to (pwd))
 (verbose (marian-verbose)))

 The form of the from argument from may be either the same as for a machine-independent
path directory (that is a list of atoms, where an atom is either a string or a symbol), a ref-
erence to a machine independent logical (see show-translations) or a machine dependent-
path (i.e a namestring). If the form of the argument is a machine dependent path then only
the directory part of the path is used. The form (setf (marian-lib) ...) is used to set the de-
fault value of from, e.g. if you are checking out several files from one library. The to argu-
ment specifies where the file should be moved. It defaults to the present working directory
(see pwd and cd). The to argument may be given as a machine dependent or machine in-
dependent path or a list of directories. If verbose is true the function displays what actions
it is taking. If checkout was successful, the function returns the path where it put the file
otherwise it returns nil. Here is an example:

 (cd "vick.work;")
 (setf (marian-lib) $utilities)
 (checkout 'general-utilities
 :comment "shows use of cd and marian-lib for to

(CHECKIN (name &key comment
 (from (pwd)) (type *lisp-file-type*) to (verbose (marian-verbose)))

Checkin looks at the reservation files to assure that the source has been reserved. It deletes
the reservation and detaches the semaphore. If a user wants to cancel a reservation or break
the reservation lock for a source reserved by another user he or she may do this with the
unreserve function.

(UNRESERVE (name &key comment (type *lisp-file-type*)
 (verbose *marian-verbose*) force)

Unless the force flag is non-nil a reservation must exist for the file being unreserved.

The functions that show the reservations or history both take arguments to tell how the his-
tory should be sorted and what history records should be returned.

(SHOW-RESERVATIONS (&key (name :all) (type :all) (reserver :all
 (verbose (marian-verbose))

 (sort-by :time))

- 20 -

Here are a few examples

> (ship-files "spike:spike.develop;*.*" :only 'lisp)

will put all the lisp files in develop directory structure into the holding area on the Scivax
machine. Whereas,

> (ship-files "spike:spike.develop.chi;*.*"
:only 'lisp :recursive nil)

will put only the chi sub-directory code into that holding area.

9. A Librarian Facility

We have developed a librarian tool called Marian. The main purpose of Marian is to prevent
this problem of uncoordinated source file changes through a file reservation system. Before
a developer changes a file, she or he must first execute a command which reserves the file
in his or her name. Should another developer attempt to reserve the same file, Marian will
detect the collision and inform the second developer. Another benefit of Marian is that it
keeps track of what files have been changed so that we can ensure the quality and document
each software release .

Marian uses a reservation file as a semaphore. When a user of Marian wants to checkout a
file Marian obtains the reservation file semaphore in the name of the user, adds a reserva-
tion entry and writes the file back to disk. A history record is also appended to a history.

The interaction with Marian can be specified relative to current marian-lib which can be
specified in either a machine dependent or independent way, with or without logical trans-
lations. Marian stores all path information internally in a machine independent way so that
the reservation and history files may be shared across machines.

The following is a brief catalog Marian functions:

• checkout (or check-out) reserve a file in your name
• checkin (or check-in) put a new or modified file in the library
• unreserve remove a reservation
• show-reservations what's reserved
• show-my-reservations what's reserved by you
• where-tis locate a file in the library
• show-marian-history history
• marian-lib to see or set the current default library
• marian-verbose to see or set the default verbosity level

- 19 -

8.1.1. Using the ship-files function.

The flavor of the functions cataloged above will be illustrated by a more complete defini-
tion of the ship-files function. This tool takes a file or set of files and ships them to the hold-
ing area on another machine. It can only be used to transfer files between machines which
support TCP/IP or Decnet.

SYNTAX:
(ship-files path &key (to 'scivax)(recursive t)

exclude only since (confirm t) cms
(version *CURRENT-VERSION*))

• path identifies the file(s) to be transferred. Wildcarding is allowed. Path is in the syn-
tax of the machine of the local machine

• to identifies where the files are to be shipped

• recursive whenever a directory exists as part of the pathname, do a ship-files on it as well.
The default is for ship-files to recurse.

• exclude either an atom or list and specifies the type of files to exclude in the shipping
process, e.g. :exclude 'dat would not ship any .dat files.

• only argument can be either an atom or list and explicitly states the file type to be
transferred, e.g. :only 'lisp would ship only .lisp files.

• since only files with a creation date greater to or equal to the value of this keyword
will be processed.

• confirm if this keyword is t (and this is the default value) the user is prompted for each
file. The confirmation happens via a popup menu on machines that support it
unless the value of the keyword is :tty in which case a prompting sequence en-
sues.

• cms if this keyword is nil, then cms-get-files will ignore these files when adding files
to the CMS libraries. This is useful for development and testing purposes. Note
that the default value is nil, so that you must explicitly set this flag if the files
are to eventually be entered into CMS.

• version this specifies the corresponding version. The value should be a version data
structure that is not discussed here. This keyword is used by CMS library load-
ing functions.

- 18 -

The code transfer and archival system detailed here is also integrated with the Code Man-
agement System (CMS) package in VMS on the Vax. By setting a keyword flag a user
can specify that the files should be loaded into the CMS system. There are functions that
take the contents of the holding area and load it into the CMS directory structure (relative
to a CMS root directory) as well as functions that do the inverse, going from the CMS li-
braries to the holding area.

Directory HA

EXPLORER

Directory
HA

MAC

ship-files

put-files

get-files

K
erm

it
K

er
m

it

Kermit

D
ec

ne
t

Decnetget-files

cms-get-files

cms-put-files

CHA DHACMS

VAX

- 17 -

• delete-files-from-holding-area - removes all files from the holding area
• describe-note-filesprints contents of file.notes
• clean-up-note-files- removes any references in file.notes to a file which is not in

the holding area (usually due to network problems)
• clean-up-msg-files - deletes any message file which is not referenced by a notes

file
• clean-up-holding-area - performs clean-up-msg-files and a clean-up-note-files
• load-netestablishes network information

The functions ship-files and put-files populate holding-areas. They each take a path argu-
ment that identifies what part of the directory structure to collapse into the holding area.
They create what is called a MSG file for each file along the given path and a NOTES file
that describes the mapping between the encoded MSG file name and the actual name and
location of the file. These NOTE files then contain pairs of encoded MSG file name and
MIPS that describe the actual name and location of the file.The function get-files which re-
trieves the files from the holding-area and moves them into the regular directory structure
just read the NOTE files and does the reverse mapping.Note that there is a concept of a root
directory. Thus the directory structures on the different machines need not be absolutely
the same on the same relative to a root directory. Suppose that the root directory on the
VAX is disk$bruno:[ai_library.spike] and there is a MSG file that corresponds to an Ex-
plorer file named:

spike:spike.develop.chi;commands.lisp#29

Now the representation of this file that appears as the NOTES file is:

#S(machine-independent-path :host "spike" :device " " :directory
("spike" "develop" "chi") :name commands :type "lisp" :version 29)

The functions that operate on the holding area on the VAX understand that this becomes
the file disk$bruno:[ai_library.spike.develop.chi]commands.lisp

The figure illustrates how the various commands transfer files within a machine and be-
tween machines in the particular we had at one point during the Spike project, The arrows
are labelled with the functions used to transfer files. The system illustrated contains just 3
computers: an Explorer, a VAX and a Macintosh. The terminology employed here is sim-
ilar to that used in THERE system. (Bershad88)

- 16 -

compile-date(B) := check-recursively(B)
; post build actions for B if necessary
if compile-date(B) > compile-date(A) and
 compile-request(A) = T
 then post (:compile A) action at time=NOW
else time=compile-date(A)
if load-request(A) then post (:load A) action
return time ; used for other comparisons

7.3.8. Executing Build Actions

There are two unusual situations in this part of the algorithm. If the user has specified se-
lective then loop over the list of build actions and ask for confirmation about each. If the
user has specified print-only then print the list of build actions and quit. The usual case
however is that each build action in the list in slot build-actions is interpreted. If the build
action is :compile the source file for the module is compiled. If the build action is :load the
object file for the module is loaded.

8. Code Transfer and Archival

In a multiple machine environment it is necessary from time to time to synchronize and
distribute the release of a software system. This section describes a tool that allows a soft-
ware system to be archived and then distributed to different machines. The basic idea here
is that at some point a directory hierarchy is put into a flattened form. This flattened form
is then transmitted via some communication protocol (TCP/IP, Chaosnet, Kermit, or even
tape) and the directory hierarchy is resurrected.

8.1. Holding Areas

Each machine has a “holding area” (HA) where files are temporarily staged. On all ma-
chines, the holding area is used to receive files from another machine. The files are then
moved from the holding area to the correct directory tree. The holding area contains the
flattened directory hierarchy with special files that instruct the system how to resurrect the
hierarchy.

Here is a brief catalog of the functions available to the user:

• ship -files - copies files from local machine to holding area on another machine
(for machines which support Decnet or TCP/IP)

• put-files - copies files to the holding area of the local machine (for machines
which do not support Decnet or TCP/IP)

• get-files - copies files from the holding area into the proper directory (inverse of
put-files)

- 15 -

Consider this part of a system definition:

(:compile-load spike-core (:depends-on globals))

A compile action specification such as the one above is interpreted as follows: The :com-
pile-load specification causes a T to be placed into the compile-request and the load-re-
quest slots of the module spike-core. If the specification had been :compile then the load
request would not have been noted. The symbol globals is used to key into the module-cat-
alog and the resulting module object is placed in a list in the slot load-first.

7.3.6. The Module Network

As a result of interpreting the system definition zero or more module hierarchies will result.
Each hierarchy will have a root node which depends on no other module (but may be de-
pended on), leaves that have dependencies, and intermediate nodes that have both charac-
teristics. Each tree should be free of cycles and so an exhaustive examination of all nodes
is done to verify this. The algorithm is simple: Each module is touched only once (a list of
nodes is kept to make sure of this) and labeled with a unique marker which is used to see if
the algorithm has passed through the module and returned to it (revealing a cycle). If a mod-
ule has already been marked, an error is flagged indicating the presence of the illegal cycle.
If the module has not been marked and it is not in the list of previously checked modules,
then each of the modules in the load-first slot is checked.
The next step that is done is to loop over all modules in the system and for each create the
true pathnames from the system-logical-host, the module logical directory, and the mod-
ule's file.

7.3.7. Collecting Build Actions

In order to build a system, Build System must collect the set of build actions. It does this
work on the basis of the file information associated with each module. Each time that a
build-system is done, every module must be updated as to the status of its own associated
files. The program loops over all modules, and for each the file system is checked for the
appropriate file information. If numeric version is the criterion then the algorithm is this:

; Assume depends-on(A,B)

if not-loaded(B) then post (:load B) action
if version(objectfile,A) < version(sourcefile,A) and
 compile-request(A) = T then post (:compile A) action
if load-request(A) then post (:load A) action

If the criterion for file recency is creation date, the algorithm is this:

- 14 -

• The System Definition File must be located and loaded to create the system ob-
jects and network of module objects.

• The module network is traversed in order to determined the set of necessary Build
Actions.

• The Build Actions are interpreted.

7.3.4. Finding the System Definition File

When the (build-system 'system-symbol) function is evaluated, first a check is
made to see if the system has been created before. This is done by looking at the variable
TABLE-OF-SYSTEMS which should be bound to a hash table. Using the system-sym-
bol as hash key, the desired value is an object of the class system-table-entry.

1. If there is an entry for system-symbol return it. Otherwise make an entry and store it
in the table.

2. See if the most recent version of the System File has been loaded (load it if neces-
sary). This check is based on numeric version and is important if the System Defi-
nition File is moved.

3. Determine whether the most recent version of the System Definition File has been
loaded. If the correct System Definition File has not been loaded, it is loaded and
the system definition stored there is evaluated. If the keyword option definition-re-
load is NIL, the System Definition File will not be reloaded even if a newer version
is found.

4. The pointer to the new system object is stored in the table entry object and returned.

7.3.5. Creating the System and Modules

As mentioned in a previous section, when the System Definition File is loaded and the sys-
tem definition form evaluated, a set of objects is instantiated. This set includes the unique
system object and its modules. From the definition, the name, package, and logical-host are
determined and stored in the system object. The system object slot module-catalog will
contain a hash-table that provides a mapping from module names to their objects.

Each module specification that is encountered causes a module object to be created and
stored in the modules slot of the system object. The symbolic name of the module is ex-
tracted and stored in the object. The machine-independent file information is at this point
dissected into the directory and file portions and those are stored in the corresponding slots
in the module object.

- 13 -

7.3.1. Class: System-Table-Entry

(defclass SYSTEM-TABLE-ENTRY ()
 (system-file ; Points to definition file
 system-file-version ; Check for recency
 definition-file ; System definition storage
 definition-file-version ; Recency of definition
 object)) ; System object

7.3.2. Class: System

(defclass SYSTEM ()
 (name ; Symbol id for system
 modules ; List of modules
 module-catalog ; Table of modules
 (package :initform 'user) ; Default package
 (logical-host :initform "SYS") ; Logical file host
 (file-version-check :initform :by-version)
 (load :initform t) ; Load if necessary?
 (compile :initform t) ; Compile?
 (recompile :initform nil) ; Compile in any case?
 (print-only :initform nil) ; Inform only?
 (silent :initform nil ; Suppress output
 (selective :initform nil) ; Ask the user?
 (build-actions :initform nil)) ; List of actions

7.3.3. Class: Module

(defclass MODULE ()
 (name ; Symbolic id of module
 system ; Parent System instance
 (directory :initform "") ; Logical directory string
 (filename :initform "") ; File string
 pathname ; Translated source file
 compiled-pathname ; Translated object file
 true-pathname ; Source file pathname
 true-compiled-pathname ; Object file pathname
 (date :initform 0) ; Universal time compilation
 compile-request ; Compile module's file
 compiled-flag ; Most recent file compiled
 load-request ; Load module's file
 loaded-flag ; Object file has been loaded
 recompile-request ; Compile the file in any case
 load-first ; Dependency modules
 cycle-flag))

These are the main steps that are taken during a system build.

- 12 -

The keyword options are described below.

 • compile - If non nil modules are examined and for a given module, if its compiled file
version is out-of date, then a compile module build action is noted for that module.
• recompile - If non nil the source file associated with each module in the system will be
compiled regardless of version.
• selective - If non nil the system builder will query the user for compile and load confir-
mations.
• print-only - If non nil the system modules will examined, build actions collected and
printed to the screen. No compiles or loads will be effected.
• file-version-check - May be either :by-version or :by-date. These two options produce
very different behavior. The :by-version value is the default and is responsible for causing
the numeric file version numbers to be considered when testing a module for having any
out-of-date object file; the testing will be intra-modular and will not usually affect other
modules. The :by-date value will cause the file creation dates to be used for this test.
• silent - If non nil then the messages that indicate build-action executions are not printed.

Here are a few small examples of invoking the system builder on a TI Explorer:

(build-system 'spike-develop :compile t :print-only t)

Build Actions:

Load module: GLOBALS
 file: Spike: SPIKE.DEVELOP;SPIKEGLOBALS.XLD#6
Load module: SPIKE-CORE
 file: Spike: SPIKE.DEVELOP.CORE;SPIKE-CORE.XLD#12
Compile module: PLANNING-SESSION
 file: Spike: SPIKE.DEVELOP.CORE;PLANNING-SESSION.LISP#16
Load module: PLANNING-SESSION
 file: Spike: SPIKE.DEVELOP.CORE;PLANNING-SESSION.XLD#16

This example below illustrates the selective option; the user is asked to affirm each build
action. No logical checks are done here; that is, if a user denies a request to load a module
upon which other modules depend, errors may occur.

(build-system 'spike-develop :selective t)
Load module: GLOBALS? (Y or N) Yes.
Load module: SPIKE-CORE? (Y or N) Yes.
Load module: PLANNING-SESSION? (Y or N) Yes.

7.3. The Data Structures and Algorithms Behind the System Builder

The main classes used are system-table-entry (used to keep a record of the system descrip-
tion files), system (used to describe the organization of the files for a single application) ,
and module (used to describe one component of a system).

- 11 -

A small example of s system definition follows:

(define-system SPIKE-DEVELOP
 (:name "Spike Develop")
 (:package spike)
 (:logical-host 'spike)

 (:module globals ($develop spike-globals))
 (:module spike-core ($core spike-core))
 (:module planning-session ($core planning-session))

 (:compile-load globals)
 (:compile-load spike-core (:depends-on globals))
 (:compile-load planning-session (:depends-on spike-core))

The define-system macro can be divided logically into three parts: major system attributes,
module declarations, and module build-actions and dependencies. The ordering of these
parts is important; modules declared in the second section are referenced in the third sec-
tion. The ordering of the declarations within each logical section is not important.
The major system attributes include the name of the system, its package (the symbol space
where all compiling and loading will occur), and the logical host specification (the prefix
that identifies logical pathnames).
The module declarations section contains forms that have the syntax: (:module mod-
ule-name (logical-directory file-name)). Once a module has been de-
fined, it can be used by name in the module build-actions section.

The build-actions section may contain forms with the syntax:
(build-action module [(:depends-on {module}*)])

The build-action must be one of :compile or :compile-load. The :depends-on specifica-
tion is optional and will be interpreted to mean that before the build action is effected, the
modules named in the specification must first be compiled and loaded into Lisp memory.
In the example, assume that the module planning-session depends on spike-core and glo-
bals. The planning-session/globals dependency will be inferred (planning-session depends
on spike-core which depends on globals) and therefore does not need to be explicitly stat-
ed. Transitivity of module dependency is supported in this implementation.

7.2. The System Builder's point of view

 The System Builder may cause a system to be built by calling the function: build-system.
The syntax for the call is:

(build-system 'system-name &key
 recompile selective print-only silent (compile t)
 (file-version-check :by-version)(definition-reload t)

- 10 -

The System Builder provides the tools and programs to serve two different users: the Sys-
tem Designer, who has knowledge of the correct file locations and dependencies, and the
System Builder, who wishes to call a single program that will create a system that he can
use. The System Builder may be a program developer or an end user. Utilities have been
defined that provide the System Designer with the ability to define the modules in a system
and the dependencies of those modules The System Builder is provided with the utilities to
cause a defined system to be built; this build includes the compilation of files that do not
have up-to-date object versions and the correctly ordered loading of object files into Lisp
memory.
7.1. The System Designer's point of view

This section discusses Build-System from the System Designer point of view. The System
Designer is responsible for three main tasks.

• Defining the translations for the system.
• Defining the system.
• Storing the definitions in a file in the correct place.

There are two important files that must be created and placed appropriately: the System
File and the System Definition File. The latter file stores the definition of the system (mod-
ules and relationships); the former stores a mapping from the system symbol to the System
Definition File. The System Designer places the System File in the top level directory
"build-system". There should be one such file per system and it should contain a form
that has this syntax:

(system-definition-file 'system-name system-definition-file)

The system definition file can be a machine independent file reference as illustrated below:

(system-definition-file 'spike
 (create-machine-dependent-path
 :host 'example
 :directory '(spike system-defs)
 :name 'spike

:type 'system)

This code defines the location of the system definition to the the System-Builder and al-
lows one to merely request a build for the system name. In the System Definition File the
system designer places the lisp forms that define the logical translations desired and define
the system and its modules. Other forms may also be present to create the system package,
set up special variables, and so on.

- 9 -

 (*OUT-2* "Spike:SPIKE.DEVELOP.TESTING.RESULTS;OUT.RESULTS#>"
 :DIRECTION :OUTPUT
 :IF-DOES-NOT-EXIST :CREATE
 :IF-EXISTS :SUPERSEDE)
 (LET* ((*OUT-1* (MAKE-SYNONYM-STREAM '*OUT-2*)))
 (WITH-OPEN-FILE
 (*OUT-3* "Spike:SPIKE.DEVELOP.TESTING.RESULTS;OUT3.RESULTS#>"
 :DIRECTION :OUTPUT
 :IF-DOES-NOT-EXIST :CREATE
 :IF-EXISTS :SUPERSEDE)
 (LOAD
 "SPIKE: SPIKE.DEVELOP.TESTING.TESTS; COMPLICATED.TEST#>"
 :VERBOSE NIL
 :IF-DOES-NOT-EXIST NIL)))))
 (LOAD "SPIKE: SPIKE.DEVELOP.TESTING.TESTS; EPI.EPI#>"

:VERBOSE NIL :IF-DOES-NOT-EXIST NIL))

6. A Machine Independent System Builder

This section describes the Build-System tool which has been created in order to support the
organization and building of large Lisp programs. It has been implemented using Common
Lisp and CLOS. The Build-System tool is an automated facility for managing the files in a
large system in a machine-independent manner. It includes a protocol for creating a system
definition. This definition encodes the system designer's knowledge of the files in a system
and is used to guide the compiling and loading of the system files. Files are represented as
modules. Information in the definition specifies what modules are to be compiled or loaded
and for a given module what modules must be compiled or loaded first in order to minimize
the possibility of referencing undefined macros, functions, special variables, and data struc-
tures. A flexible external function provides the ability to build systems and has several use-
ful options. This facility is similar in flavor to a number of software tools. These include
the Unix make command (Feldman83) and the make-system command available on many
Lisp machines. Our implementation differs in several ways. First in some of the other sys-
tems transitive module dependency analysis is not supported. That is, in some of the other
systems if C depends on B and B on A, the dependency information for C must explicitly
indicate that a pre-load of A and B (in that order) is required in the specification. Our build-
er performs the dependendency closure without explicit specification in the system defini-
tion. Further all the other cited systems are machine and implementation dependent. Ours
is entirely machine independent. The system definition files reference module location us-
ing machine independent logicals and paths. Finally our system supports the concept of
subsystems.

7. The System Builder from two different points of view

- 8 -

• define-test-suite - associates a set of one or more tests with a name
• undefine-test-suite - undoes define-test-suite
• describe-test-suite - displays brief description of tests in suite and suite info

Creating and Looking at Test Results
• run-test - runs tests and captures results of evaluating test forms
• run-test-suite - runs the set of test associated with a suite
• compare-results-to-benchmark -analyzes difference of test form results to benchmark
• update-benchmark - makes the current results file the benchmark and resets results
• examine-test - displays information on the status of tests, and whether referenced files
exist
• move-tests - moves tests, prologs, and epilogs into the testing structure from a user
directory

Operations On the Test Table
• load-test-table - loads the test table into memory
• save-test-table - saves the test table to disk
• clear-test-table - clears the in memory test table

5. Design Notes for LTM

At the heart of the system is the test table data structure. This is implemented as a hash table
whose key is a canonical representation for a test or test suite. The value stored for the key
is a structure that contains the test name and description, the mappings and MIPs that point
to the location of the files that contain the test, epilog and prolog forms. The mappings are
also stored internally as MIPs although when they are defined by a call to define-test they
may be declared in either a machine dependent or machine independent fashion.

When the test-table is stored on disk the values of the table are used to construct calls to the
definition functions. That is the test table on disk does not contain raw data structures but
rather the the calls to the functions to resurrect the data structures. In this way the underly-
ing data structures used in LTM can change without invalidating the test table files.

When the macro run-test is invoked the code to run a test is created. The basic idea is to
create an unwind-protect that first loads the prolog,then loads the test file, and then as the
protected form, loads the epilog file. The following example using the definition of the test
named complicated from the define-test section above shows the code created from the
run-test macro.

(UNWIND-PROTECT
 (PROGN
 (LOAD "SPIKE: SPIKE.DEVELOP.TESTING.TESTS; PRO.PRO#>"

:VERBOSE NIL :IF-DOES-NOT-EXIST NIL)
 (WITH-OPEN-FILE

- 7 -

4. Defining, Running and Comparing Results of Tests

The general steps for testing in LTM are to prepare a test, define it to LTM, run the test,
compare the results of the tests to a benchmark and possibly update the benchmarks. A test
is established within LTM with the define-test macro. The purpose of this macro is to create
a definition of a test and enter it in the test-table.

Syntax:

(define-test test-name
 &key test-file mapping prolog epilog description)

The test-file argument is the name of the file that contains the test forms. The mapping is
described above. This name component is either a string or a symbol and refers to a file
that will be created in the results directory. Note that if no mapping is given explicitly with
a keyword argument there is an implicit mapping for *standard-output* to a result file.

Example :

(define-test complicated :test-file comp
:description "this is a fairly complicated example"
:mapping ((*out-1* out) (*out-2* out) (*out-3* out3))
:prolog pro :epilog epi)

will set up a test named complicated in the test table. It will associate the file comp.test,
pro.prolog, and epi.epilog in the tests directory with the test as the test, prolog, and epilog
files respectively. It will direct all output to the streams *out-1* and *out-2* to the file
out.results in the results directory. Also it will direct all output to *out-3* to the file
out3.results in the results directory.

A test may be run with the run-test macro. The results produced from evaluation of the test
forms are compared with the compare-results-to-benchmark macro. The syntax and opera-
tion of that macro is presented below:

Syntax:
(compare-results-to-benchmark test-name
 &key (filter #'identity) (predicate #'equalp)
 (read-function #'read-line) (quiet t) verbose)

Here is a brief catalog of the other LTM functions:

Defining Tests and Test Suites:
• define-test - establishes the test in LTM
• undefine-test -voids the establishment of the test
• describe-test - display a brief description of the test

- 6 -

identified by a name. Information about the tests are stored in the test-table.

- 5 -

3.1. Some Definitions

A test is a set of lisp functions and macros that produces some output to a set of streams.
The word stream is used in the same way as in Common Lisp and is an object that serves
as a sink or source for data. Associated with each test are several attributes. The first at-
tribute of a test is its name . The name is a string or symbol that uniquely identifies a test.
Another attribute of a test is its filename, also called the test file. This is the name of the
file that contains the series of forms to be tested. Each test has a description which is a
string that explains what the test does.

Also associated with each test is a mapping. This mapping associates with each test a set
of output-stream / file pairs. These pairs are used to associate streams of output with files
in the following way. All output to the stream part of a pair is redirected to the file identified
by the file part of the pair.

Each test may have a prolog or epilog file associated with it. The prolog specifies the
name of a file containing functions and macros to be evaluated before those forms from
the test file. The epilog is a file that contains forms to be evaluated after the forms in the
test file are evaluated. The difference between the sets of forms contained in the epilog or
prolog files and the forms in the test itself is that only the outputs from the functions and
macros in the test file are captured by the test. The results file then is unaffected by the
forms in either the epilog or prolog file. The purpose of the forms in the prolog is to set up
needed conditions for the test, while the purpose of the forms in the epilog file is to take
down conditions from the test. For example, if one wanted to run a test without GC a form
in the prologue could do a GC-OFF and a form in the epilog could do a GC-ON. The forms
in the epilog are guaranteed to be executed even if the test does not run to conclusion.

This (redirected) output from a test is called the results of a test. An instance of the results
that has been declared correct is called a benchmark for the test. To update a benchmark
is to deem some results correct and to establish these results as the benchmark.

Another operation on results is to compare them to a benchmark. The process of compar-
ing results to a benchmark entails reading from both the benchmark and results file, and
comparing the contents of the files. LTM provides a very general way to compare files: The
user can specify a filter function (to remove unneeded results such as a dates) as well a
comparison function (to define what is meant by equality, e.g. does “2” = “2.0”?). Let us
call the items in the results file result forms and the items in the benchmark file bench
forms. A filter is a function to be applied to both the result and bench forms. and is asso-
ciated with a test.. A test predicate is also a function that takes two arguments and is also
associated with a test.. If the test predicate returns non nil when given the filter applied to
the result form as its first argument and the filter applied to the bench form as its second
argument the forms are said to compare. The results are said to compare if for all result
forms the corresponding bench form compares. A set of tests is called a test suite and is

- 4 -

The function create-machine-dependent-path takes the same arguments as create-ma-
chine-independent-path yet returns a machine dependent path. So to continue our example

(CREATE-MACHINE-DEPENDENT-PATH
 :host 'example :directory $data :name 'test)

might return something like "spike:spike.develop.data;test.lisp#>" on an Explorer Lisp ma-
chine.

We have developed a set of functions to go between machine dependent and machine in-
dependent representations with and without doing translations. These are cataloged below:

• machine-independent-path - turn MDP into a MIP without translations
• machine-dependent-path - turn MIP into a MDP without translations
• get-translation-for - interpret as a translation relative to a logical host
• do-translations - map over atoms doing translations relative to a logical host
• show-translations - display translation for one or more logical hosts
• clear-translations - clear the translations table
• directory-p - a predicate that can be applied to both MIP and MDPs
• directory-present - a machine independent way to check for the existence of a direc-
tory
• dirs-in-directory - returns all directories contained in a MDP
• directory-files - a recursive directory files with confirmation

3. A Lisp Test Manager

The Lisp Test Manager (LTM) is a portable Lisp regression test package. Regression test-
ing is useful for detecting errors induced by changes made during software maintenance
or enhancement (Bucher75). The regression test manager described here can be used for
both functional and performance testing as described in (Fairley85).

The general idea for the testing system is to provide a way to systematically test a set of
Lisp forms in a portable way. The testing system described here is similar in flavor to Dec
Test Manager (DTM on the VAX). A user creates a test by creating a file and putting a
series of forms in this file. All output to any number of streams that are referenced by the
tested forms are caught in a file. This captured output can be stored and compared with
other generations of output. The differences between the output generations can then be an-
alyzed. Tests are defined and stored in a table in memory which may be saved (loaded) to
(from) disk. Tests may also be grouped into collections called suites.

- 3 -

there is no explicit support for the definition of logicals in Common Lisp itself. In con-
structing a method for machine independent translation, the basic idea is to have a machine
independent way to specify a logical name for a directory path or device. These logicals
are then used in conjunction with the machine independent path functions as will be shown
latter.

Logical translations are set up in a table that may be populated with a call to to a definition
function define-machine-independent-translation. These translations are associated with a
logical-host. Associated with the logical-host is a physical host and a set of translations for
that host for devices and directories. All arguments are put into a canonical form by the
function. The complete syntax for the definition function is given below:

(DEFINE-MACHINE-INDEPENDENT-TRANSLATION (&key
 (logical-host *SYSTEM-LOGICAL-HOST*)
 (physical-host (where-i-am)) translations device)

Our implementation of logicals is constructive and recursive. Multiple calls to define-ma-
chine-independent-translation augment the logicals and translations can be defined on top
of other logicals. They may be declared in any order as the function uses a topological sort
(Kruse87) to decide the order in which logicals must be defined to avoid forward referenc-
es. Here is an example of the use of the function :

 (define-machine-independent-translation
 :logical-host 'example
 :physical-host 'spike
 :devices '(($logical-device disk$example))
 :translations '(($data ($spike data))

 ($spike (cerb p1 spike $release))
 ($release develop)))

The function create-machine-independent-path takes the components of a MIP and re-
turns a MIP doing the substitution of logicals . Here is the syntax:

(CREATE-MACHINE-INDEPENDENT-PATH
 (&key (host *SYSTEM-LOGICAL-HOST*) device directory name

(type *LISP-FILE-TYPE*) (version :NEWEST))

Here is an example of its use using the translations from above:

(CREATE-MACHINE-INDEPENDENT-PATH
 :host 'example :directory $data :name '999p)

will return the following machine independent path construct:

#S(MACHINE-INDEPENDENT-PATH
 :HOST "Spike" :DEVICE NIL :DIRECTORY ("SPIKE" "DEVELOP" "DATA")
 :NAME "999P" :TYPE "LISP" :VERSION :newest)

- 2 -

1. Introduction

This paper presents a set of tools for the development of Common Lisp across a set of ma-
chines running different implementations of Common Lisp. The set of tools includes a test
manager, a system builder, a code transfer and archival mechanism and a librarian facility.
These tools are implemented in Common Lisp (Steele84) and CLOS (DeMichiel89)
(Keene89). The usefulness of these tools has been demonstrated in the development of a
medium scale software project called SPIKE (Miller88) at the Space Telescope Science
Institute.The SPIKE project consisted of some 60K lines of Lisp code. and runs on several
Common Lisp implementations including VAXLISP, Allegro Common Lisp, and TI Ex-
plorer Common Lisp on a host of different machines.

Although traditionally the software life-cycle for AI software development has been con-
sidered to be fundamentally different from that of conventional software, (Partridge86) it
has been our experience that a tool set that supports the testing and implementation phases
of a software life cycle are just as important in the AI domain as well. Other authors have
discussed Lisp based exploratory programming environments (Sheil83) and knowledge
engineering environments (Erman88) but we discuss here a more general purpose and ma-
chine independent software development tool set.

While it is true that many implementations of Common Lisp have tools to support different
phases of the software life cycle, unlike the Ada Programming Support Environment
(APSE) in the Ada community (Freedman85), the Common Lisp community does not
have a unified view of the tool set. . In this paper we discuss the set of tools we have de-
veloped to support our development process across a number of machines and suggest how
this set of tools may be extended in the future by integrating them with an intelligent data
dictionary.

2. Machine Independent Paths and Logicals

At the heart of the tool set is the ability to represent the location of a file in a machine in-
dependent way. A machine independent path (MIP) is an abstract data type based upon the
Common Lisp notion of a path (Steele84 p 410-418). Like a Common Lisp pathname a ma-
chine independent path has components for the host, directory, name, type and version for
a file which are accessible with accessor functions. Unlike a pathname a MIP has a stan-
dard representation across machines and implementation. Thus a function may reference a
file by a MIP and can be shared among machines and implementations without the use of
compiler directives. A machine dependent path (MDP) is just a namestring in the syntax
of the local machine. A MIP is similar in concept to the notion of pathname in APSE and
has the the machine independence of the MINT system (Godfrey85) and the portable model
of a filing system used by Seismic Kernel System. (Hatton88).

Many implementations of Common Lisp support a notion of logical file names. However

- 1 -

Tools and Techniques for the Development of Common Lisp Applications
Across Heterogeneous Machines

Shon Vick
Vick@ STScI.edu

(301) 338-4508

and
Jeff Sponsler

Space Telescope Science Institute
3700 San Martin Dr.

Baltimore, MD 21218

Abstract:

This paper discusses a set of tools and techniques useful in the development of Common
Lisp software in a heterogeneous machine environment. The set of tools described include
a test manager, a system builder, a code transfer and archival mechanism as well as a li-
brarian facility. These tools are implemented in Common Lisp and the Common Lisp Ob-
ject System (CLOS) utilizing a machine independent file path construct which is also
described. The paper also includes a comparison of these tools with their counterparts in
conventional programming environments from a software engineering perspective. Further
extensions to the tool set are also proposed.

